x^2+34x=4x^2+165x+85

Simple and best practice solution for x^2+34x=4x^2+165x+85 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+34x=4x^2+165x+85 equation:


Simplifying
x2 + 34x = 4x2 + 165x + 85

Reorder the terms:
34x + x2 = 4x2 + 165x + 85

Reorder the terms:
34x + x2 = 85 + 165x + 4x2

Solving
34x + x2 = 85 + 165x + 4x2

Solving for variable 'x'.

Reorder the terms:
-85 + 34x + -165x + x2 + -4x2 = 85 + 165x + 4x2 + -85 + -165x + -4x2

Combine like terms: 34x + -165x = -131x
-85 + -131x + x2 + -4x2 = 85 + 165x + 4x2 + -85 + -165x + -4x2

Combine like terms: x2 + -4x2 = -3x2
-85 + -131x + -3x2 = 85 + 165x + 4x2 + -85 + -165x + -4x2

Reorder the terms:
-85 + -131x + -3x2 = 85 + -85 + 165x + -165x + 4x2 + -4x2

Combine like terms: 85 + -85 = 0
-85 + -131x + -3x2 = 0 + 165x + -165x + 4x2 + -4x2
-85 + -131x + -3x2 = 165x + -165x + 4x2 + -4x2

Combine like terms: 165x + -165x = 0
-85 + -131x + -3x2 = 0 + 4x2 + -4x2
-85 + -131x + -3x2 = 4x2 + -4x2

Combine like terms: 4x2 + -4x2 = 0
-85 + -131x + -3x2 = 0

Factor out the Greatest Common Factor (GCF), '-1'.
-1(85 + 131x + 3x2) = 0

Ignore the factor -1.

Subproblem 1

Set the factor '(85 + 131x + 3x2)' equal to zero and attempt to solve: Simplifying 85 + 131x + 3x2 = 0 Solving 85 + 131x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 28.33333333 + 43.66666667x + x2 = 0 Move the constant term to the right: Add '-28.33333333' to each side of the equation. 28.33333333 + 43.66666667x + -28.33333333 + x2 = 0 + -28.33333333 Reorder the terms: 28.33333333 + -28.33333333 + 43.66666667x + x2 = 0 + -28.33333333 Combine like terms: 28.33333333 + -28.33333333 = 0.00000000 0.00000000 + 43.66666667x + x2 = 0 + -28.33333333 43.66666667x + x2 = 0 + -28.33333333 Combine like terms: 0 + -28.33333333 = -28.33333333 43.66666667x + x2 = -28.33333333 The x term is 43.66666667x. Take half its coefficient (21.83333334). Square it (476.6944447) and add it to both sides. Add '476.6944447' to each side of the equation. 43.66666667x + 476.6944447 + x2 = -28.33333333 + 476.6944447 Reorder the terms: 476.6944447 + 43.66666667x + x2 = -28.33333333 + 476.6944447 Combine like terms: -28.33333333 + 476.6944447 = 448.36111137 476.6944447 + 43.66666667x + x2 = 448.36111137 Factor a perfect square on the left side: (x + 21.83333334)(x + 21.83333334) = 448.36111137 Calculate the square root of the right side: 21.174539225 Break this problem into two subproblems by setting (x + 21.83333334) equal to 21.174539225 and -21.174539225.

Subproblem 1

x + 21.83333334 = 21.174539225 Simplifying x + 21.83333334 = 21.174539225 Reorder the terms: 21.83333334 + x = 21.174539225 Solving 21.83333334 + x = 21.174539225 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-21.83333334' to each side of the equation. 21.83333334 + -21.83333334 + x = 21.174539225 + -21.83333334 Combine like terms: 21.83333334 + -21.83333334 = 0.00000000 0.00000000 + x = 21.174539225 + -21.83333334 x = 21.174539225 + -21.83333334 Combine like terms: 21.174539225 + -21.83333334 = -0.658794115 x = -0.658794115 Simplifying x = -0.658794115

Subproblem 2

x + 21.83333334 = -21.174539225 Simplifying x + 21.83333334 = -21.174539225 Reorder the terms: 21.83333334 + x = -21.174539225 Solving 21.83333334 + x = -21.174539225 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-21.83333334' to each side of the equation. 21.83333334 + -21.83333334 + x = -21.174539225 + -21.83333334 Combine like terms: 21.83333334 + -21.83333334 = 0.00000000 0.00000000 + x = -21.174539225 + -21.83333334 x = -21.174539225 + -21.83333334 Combine like terms: -21.174539225 + -21.83333334 = -43.007872565 x = -43.007872565 Simplifying x = -43.007872565

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.658794115, -43.007872565}

Solution

x = {-0.658794115, -43.007872565}

See similar equations:

| 6w=18-2q | | 4(4x-10)=72 | | -6y-1=27-y | | 0.40(x)=28 | | (2x+17)-3=3(-2x+15) | | 133=x^2+12x | | 4y-8+4y=9 | | 15x+20y=700 | | 2450=L(35) | | 3-x+11=x-30 | | 2x+3-4x=2 | | -3/4p=15 | | X^3-x^2-69x-189=0 | | 70+(7-p)-(p+22)=0 | | (2x+44)(2x+41)= | | (3x)+120= | | 15.2+1.52= | | -4s^2+400s-10000=0 | | 6953=17m | | x^4-13x^3y+42y^2x^2=0 | | 15.2-1.52= | | 5x-7/4=-7 | | 10(t-1)=5(t+8)-t | | 2.2x^2+6.7x-6.5=0 | | y-8=1/2x-4 | | 2x^3-10x^2y-12y^2x=0 | | 3-2n=n+8 | | 34*2n-8=2000 | | (2b)+b+(.50b-2)=180 | | (4x)(x)=400 | | 0.25(8z-4)=z+8-22 | | 7x-4/4x |

Equations solver categories